AATCC California Chapter Technical Section Meeting-Wearable Technology

March 13, 2019 6:00 PM at Levi’s in San Francisco

Start of Meeting 6:18 PM

Introductions by Trish Hayes-Danitz-AATCC California Section Wearable Technology Pillar Chair

- Gus Jones
 - Technical Service Consultant for Dupont
 - 12 years’ experience across the printed electronics value chain
 - Has led a variety of projects including Nano Silicon inks for photovoltaics
 - Most recent project has included application engineering for Dupont IntexarTM for fitness, heating, and healthcare applications

- Meg Grant
 - Creative Soft Circuit Technologist at BeBop Sensors
 - Worked with Google’s Project Jacquard in 2013
 - Currently working at BeBop sensors, a Berkeley startup, which specializes in textile-based pressure sensing technology

- Valerie Root
 - Senior Environmental Health and Safety Specialist
 - 10 years in hazardous waste management expertise
 - Supports clients in end of life waste management and practices for Biomedical and other industries

Presentations

- Gus Jones-Technology at Dupont
 - 80 years in the textile industry working on materials such as Nylon, Kevlar, etc.
 - Highly involved in electronics
 - Not many consumers know this
 - 95% of smart devices
 - Electronic materials
 - Allows you to put wiring in to allow functionality in smart garments
 - Two films
 - A conductive paste, heat transfer, the inks are screen printed
 - Manufacturing ready
 - It’s washable and fabric like (has hand feel/drape)
 - Two silver inks
 - The carbon sensor acts as a protective layer in the sensor area
 - Base film used to heat press
 - Seam tape
 - TPU film used for washing and environmental protection
 - Electrical Performance
 - There is a change in resistance when stretched
 - Regular wire has no stretch
 - Resistance-no change
 - Dupont materials-the ink moves
 - Allows for stretch and conductive polymer ink
- Washable
 - AATCC 135 cold wash, air dry
 - After 50 washes, it had minimal increase

- 3 Markets
 - Fitness
 - Bodyplus
 - Sports bras, men’s shirts
 - Silver pads to make body contact
 - Silver trace in center, makes connection to a dock
 - Tracks heart rate and sends information to phone
 - Heat
 - Ralph Lauren Winter Olympics
 - Carbon used as a resister and gives off heat
 - Usually a waste product, but was useful in this garment
 - By 160 seconds, the whole panel heats up
 - Maintains heating profile up to 2,000 cycles
 - Health
 - Owlet Brand
 - Connects with expectant mothers with their children

- Questions?
 - When washing items with the silver particles in them, how does it react with our water?
 - The silver particles and resin stay together and on the TPU, so there is no free silver to enter water system.
 - There is an increase in resistance over washes, why is it increasing?
 - The particles are not washing off, but more of a mechanical damage.
 - Tested with Heat? AATCC 135
 - Yes, survives up to 25.
 - Can you build batteries in textiles?
 - No screen-printed solution for batteries. You can put a battery pack into a garment. High power applications can use wiring.

- Meg Grant Presentation
 - E-Textile Product Developer
 - LED Matrix
 - See-through-me garment
 - Simulates the look of light being shined through you
 - Automate work?
 - Conductive lace, press on lace sensor and a poem is read through speakers.
 - Optic Fibers, stripped coatings, to pull light from the environment, tiny solar panel and the end bundles, generate some electricity
 - TE Connectivity
 - Project Jacquard with Google/Levi’s
 - Commuter jacket with sensor embedded in the sleeve
 - Allowed the used to make phone calls, swipe music, etc.
 - Seismic Inc.
 - SRI International’s robotics program developing powered clothing
 - Developed for DARPA, soldiers to carry things longer.
• Electro-mechanical muscles across the body, helps support walking.
 o BeBop Sensors
 • Textile-based pressure sensing technology
 • Textile in circuit, you can measure deformity
 • Example:
 • Car seat- measure pressure, fatigue and who’s been sitting in the seat
 • Can be used in shoes/sports apparel industry
 • Data glove—was recognized in Time Magazine as product of the year in 2018 in that category

 o Textile Waste/Environmental Affects
 • As developers, we need to start thinking of this
 • Institute for the Unstable Media
 • E-waste topics provided by Andrea’s work
 o Annual used apparel waste estimated at 16M tonnes
 o 95% of landfill textiles could be recycled or reused
 o Smartphone production tripled from 2000-2014
 o Worldwide E-waste volumes expected to surpass 65M tonnes in 2017
 o Design phase impact: waste prevention by design is a far better strategy than end-of-life treatment and recycling
 • Amount of materials
 • Choice of materials
 • Scarcity and “special waste”
 • Copper is 1.4% of the eco-costs of silver
 • Secondary effects: aluminum, PET, etc.

 o Questions
 • The question of privacy in these products?
 • Data is a resource and the user should be able to choose to share, not mandatory.

• Valerie Root Presentation
 o Senior Environmental Health and Safety Specialist
 o Experience in hazardous waste
 • Universal waste is a subset of hazardous waste, which includes electronic waste
 • Toxic metals such as lead and mercury
 o California E-Waste Regulations
 • Electronic Waste Recycling Act 2004
 • A program for consumers to return, recycle and ensure safe and environmentally sound disposal of electric devices
 • When you purchase a TV, you pay $6-$10 for the disposal fee
 o Purpose of E-Waste Laws in CA
 • To limit the amount of toxic substances in certain electronic products sold in California
 • To establish a funding system for the collection and recycling of discarded covered electronic devices
 o Recycling Electronics
 • Take it apart and remove batteries
 • Take this into design thoughts
- Shredding/granulating
 - Consider the Source
 - Toxic In-Toxic Out
 - Is the material recycled/recovered or now?
 - Is there a lower hazard alternative?
 - Is it manufactured in a safe way?
 - Is it necessary?
 - Questions
 - What are the most hazardous materials?
 - Lead and Mercury (soil, atmosphere)
 - Circuit Boards, screens
 - Disposal-certified recycling-using acids
 - What do you do with biohazard/medical waste?
 - Blood/infectious items/chemo drugs/pharma items
 - Needs disinfected with bleach and put down the sewed
 - Solid waste put in red bags and incinerated
 - Any long-term research done on lead from e-waste that accumulates in the body?
 - Studies are done through blood.
 - Lead levels are currently down, especially when less present in our environments
 - No more lead in paints, gasoline
 - Any companies that design backwards with the end in mind?
 - Example is Patagonia!
 - Panel Discussion
 - Are there any AATCC Committees looking at environmental waste?
 - Sustainability Pillar-recycling/reducing
 - Carol-2019 conference focused on soil/sea in October
 - Regenerative farming
 - What methods are still needed to evaluate E-textiles?
 - Everyone has slightly different needs
 - One standard published EP13
 - Hemp legalization and usage in textiles?
 - The processing of hemp is higher and uses more water
 - HIGG Index is a resourceful tool (MSI)-free
 - You can compare materials on there
 - Privacy in medical devices?
 - Data shouldn’t be stored on that specific device but uploaded to a cloud
 - Designed for theft
 - Example
 - Temporary data tattoo that monitors the baby during pregnancy
 - Who owns the data? Women or hospital?
 - Many medical device companies comply heavily with HIPA
 - I know certain machinery has had to be utilized in order to execute a new process (i.e. to make the lace that read a poem), but how often is a whole new machine needed in order to create a new process that is effective?
▪ Machinery is built very often, usually in house and on the spot in order to create new processes.
 o April 15th Student Engagement Pillar Chair Meeting
 ▪ Students interviewing Textile Sustainability Professionals
 • End of Meeting 8:01 PM