ARTICLES

AADTC Meeting Report ... Dec. 48
AADTC National Meeting Stresses Current Interests Sept. 50
ADR New Product Review ... Dec. 23
ADR Printing Machinery Directory Feb. 17
ADR's Guide to Dye Carriers .. July 44
Akali Salt-Free Zirchrome Process for Improved Fungicidal
Chrome Mineral Dyeings (Conner, et al.) July 57
Ambitious Goals Set by Blue Ridge-Winkler Mar. 50
Anti-Snag Finishes For Polyester Knits (Heiligott) Nov. 25
Are Flammability Tests Fair to Wool? (Burgess) May 62
Automatic Control of Textile Dyeing (Bialik) Nov. 25
Automatic Control Yields Added Benefits to Mills (Riser) Nov. 30
Automation of Batch Dyeing (Hamblen, Andrade) Nov. 28

B-C

Basic Grafts to Whiten Durable Press Fabrics (Harper, et al.) Sept. 86
Batch Solvent Scouring: Hot or Cold? (Lavalle) May 46
Beating the Breaks (Beekman) ... May 35
Burlington Industries Conducts Hearing Conservation Program Aug. 38
Buying New Finishing Equipment .. Apr. 40
Carpet Dyeing and Printing (Meier-Windhorst) June 51
Chemicals for Fire Retardant Formulations Feb. 42
Combination Dyer-Extractor Cuts Costs for Mills (Eikotter) Nov. 46
Commission Processing of Knit Goods (Horan) Oct. 68
Comparing Chemical Finishing of Knit and Woven Goods Oct. 56
Comparison of Application Techniques for Deposition of Resins in Cotton Fabrics (Hamalainen, et al.) Feb. 30
Continuous Dyeing of Polyester Carpet (Forrester, LeBlanc) June 29
Continuous Dyeing Range Introduced for Pile Fabrics Nov. 45
Controlling Metal Salts (Tremaine) Sept. 47
Copolymeric Nylon Powders for Fusing Textiles (Schaaf) Nov. 31
Cotton Research Conference Stresses Improved Flame Retardant Finishes ... Aug. 46
Cutting Odor Pollution in Carpet Processes (Singer) June 55
Cyanamid Boosts Stake in Textiles .. Nov. 53

D-E

Disposables Meeting Report ... Aug. 50
Durable Press Mohair Blend Fabrics (O'Connell, et al.) June 68
Dye Migration (Abrahams) .. Sept. 43
Dyeing Panty Hose (Dreby) ... Sept. 43
Dyeing Lipsticks ... Mar. 31
Dyer Cuts Basic Costs .. Oct. 76
Editorial Index: Vol. 60, 1971 .. Feb. 56
Effect of pH on THPC-Flame Retardant (Donaldson, et al.) Feb. 48
Effect of Pre-Treatments on Some Physical and Chemical Properties of Irradiated Dyed Cotton, Part II (Kamel, et al.) Sept. 92
Electrolytic Treatment of Wastewater (Jones) Aug. 28

F

Fabric Properties of Cottons Modified with Methylated Methylol
Melamine Before and After Urea-Phosphoric Acid Hydrolysis, Part I, (Jung, et al.) .. Dec. 44
Fabric Properties of Cottons Modified with Methylated Methylol
Melamine Before and After Urea-Phosphoric Acid Hydrolysis, Part II (Jung, et al.) .. May 56
Filter Pretreatment of Wastewater Saves Money for Velvet
Textile ... Aug. 2
Finishing Washable Wool Knits (Freeman) Apr. 2
Flame Retardant Process Tops Sleepwear Standard Dec. 25
Fire Retardant Tradition Continues Mar. 2
Flame Proofing of Wool (Burgess) ... Feb. 6
Flame Retardants Directory .. Jan. 3

H-L

High Quality Knits (Grant) ... Jul. 3
How Dominion Textile Stops Pigment Migration Nov. 6
How Syntex Finishes Polyester Double Knits Apr. 28
How the Standard for Infant's Wear Will Affect Producers and Retailers (Baker) .. Jan. 2
How to Prepare and Beam Dye Textured Polyester Knits (Patterson) ... Mar. 1
How to Process with Solvent (Surden) Apr. 6
How to Successfully Print Textured Polyester (Eastman Chemical Products Lab. Staff) .. Oct. 3
Hot vs. Cold — The Financial Angle (Hoyt Mfg. Co.) Apr. 2
Importing Flame Retardancy to Cotton Knits (Moreau, et al.) ... Jan. 3
Improved Stain Release Finish (Connick, Ellzey) Nov. 8
Improving Atmospheric Dyeing of Textured Polyester (Marsh) .. Oct. 9
Improving Caustic Scour (Patton) ... Sep. 9
It Pays to Automate Batch Dyeing Processes (Withey) Nov. 7
Lady is a Dyer, The ... Dec. 9

M-N-O

Moor — Troublemaker in Knits (Hoffeld, Pratt) Dec. 8
Multi-Color Nylon Dyeing (Gottlieb) Sept. 4
New Coloring Materials .. Dec. 8
New Knit Finisher Slates Dryhouse .. Apr. 2
New Machinery, Equipment and Instruments Apr. 2
New Nopco Center Opens ... June 7
New Product Addenda ... Dec. 8
New Product Photos ... Dec. 8
New Textile Chemicals ... Dec. 8
Organic Pollutants from Mill Persist in Downstream Waters (Garrison, Hill) ... Feb. 3
Overcoming the High Cost of Skein Dyeing (Leslie) Oct. 4
One-Bath Zirchrome Chloride Fungicide and Dye (Conn.
et al.) ... Apr. 6

P

Pigmented Polyester Prints Pass Test Feb. 4
Polychromatic Dyeing and Fiber Reactive Dyes (Stethon) Apr. 4
Preparation of Fiber Cross-Sections for Studying Dye Diffusion (Olsen, et al.) .. Mar. 3
Printing Tufted Carpets (Beasley) ... June 4

R

Rapid Reversal — A Technique for Increasing Quality of Dye Application (Clifford) ... Mar. 4
Rates and Mechanisms of Reactions Between Cotton and N-Methylated Compounds (Berni, et al.) Apr. 4
Reducing Down-Time in Polyester Dyeing (Latham, Sapers) ... Jul. 4
Reducing Trimer Deposits (Peterson) Sep. 9
Relationship of the Distribution of Crosslinks to the Physical Properties of Cotton Fabrics (Sloan, et al.) Jun. 9
Removing Formaldehyde (Vivilechla) Sep. 9
relatively fragile wool fiber, so that a yarn considerably higher quality is produced insistently.

A third system has been developed for using combinations of basic-dyeable polyester with regular, dispersed-dyeable polyester. Interesting color effects can be achieved using this fiber mixture but it is essential that staining of the dispersed-dyeable polyester by the cationic dye be minimized. The regular, dispersed-dyeable fiber must be left either white, or dyed the correct color in contrast to the basic-dyeable fiber. In working out this system, it was necessary to develop a completely new and unusual carrier, Dextrasol 9256. When using this system, concluding Dextrasol 9256, an unusually vel application of cationic dyestuff may be achieved while holding staining of the gular-dyeable polyester to a much lesser degree than previously obtainable. At the same time dyeing time has been reduced to as much as two hours.

It can be seen that no single carrier is suitable for every situation. Best results will always be achieved by using products developed for a particular job.

other Considerations

It must also be noted here that although carrier selection plays a most important role in the dyeing of basic-dyeable polyester, the carrier is still only one part of the entire operation, and cannot be isolated from the effects of leveling and migrating agents and physical factors such as pH, temperature, time, liquor ratios, and other peculiarities of the equipment being used. With basic-dyeable polyester, particularly in blends with other fibers, it is necessary that the proper selection of chemicals and procedures be made, and that all factors be taken into consideration. It is really not possible to write about selection of a carrier without taking into consideration all the other inter-related parts of the system being observed. Proper manipulation of process variables, along with proper selection of chemical assistants and carriers can take much of the complexity and difficulty out of dyeing dyed polyester.
SUBJECTS

A

Acrylic Flock Adhesive Formulating, What You Should Know (Westfall) Sept. 53

B

Batch Dyeing, Automation of (Hambledon, Andrade) Nov. 28
Batch Dyeing Processes, It Pays to Automate (Withey) Nov. 27
Blue Ridge-Wrinkler, Ambitious Goals Set by Mar. 50
Breaks, Beating the (Beekman) ... May 35

C

Carpet Piece Dyeing, Solving the Problems of (Kaiser) June 33
Carpet Processing, Curing Odor Pollution in (Singer) June 55
Carpet Tile Backings, Thermoplastic Rubbers: Their Use in (Stephens, et al.) Apr. 54
Carpets, Differential Dyeing: Advantages and Dyeing Possibilities in the Production of (Pernetti) June 44
Carpets, Printing Tufted (Beasley) .. June 40
Caustic Scours, Improving (Patton) Sept. 45
Chenille, Cotton, Developing a New Type of (Sweany) June 58
Cloth Preparation, Solvent-Assisted (Kalimowski) May 31
Cotton and N-Methylolated Compounds, Rates and Mechanisms of Reactions Between (Berni, et al.) Apr. 44
Cotton, Effect of Pre-Treatments on Some Physical and Chemical Properties of Irradiated Dyed, Part II (Kamel, et al.) Sept. 92
Cotton Fabrics, Relationship of the Distribution of Crosslinks to the Physical Properties of (Sloan, et al.) Jan. 45
Cotton Fabrics, Setting (Burkitt, Hepp) June 58
Cotton Knits, Impacting Flame Retardancy to (Moreau, et al.) Jan. 29
Cottons, Fabric Properties of, Modified with Methylated Melamin-Melamine Before and After Urea-Phosphoric Acid Hydroslysis, Part II (Jung, et al.) May 36
Cottons, Fabric Properties of, Modified with Methylated Melamin-Melamine Before and After Urea-Phosphoric Acid Hydrolisys, Part II (Jung, et al.) Sept. 64

D

Differential Dyeing: Advantages and Dyeing Possibilities in the Production of Carpets (Pernetti) June 44
Durable Press Fabrics, Basic Grafts to Whiten (Harper, et al.) Sept. 86
Dye Carriers, ADR's Guide to ... July 44
Dye Diffusion, Preparation of Fiber Cross-Sections for Studying (Olsen et al.) May 38
Dye Oxidation, Sulfur (Tigler) ... Sept. 46
Dyeing, Carpet, and Printing (Meier-Windhorst) June 51
Dyeing, Polyacrylic, and Other Dyes (Stetson) Apr. 42
Dyeing Update ... March 31
Dye-Extractor Cuts Costs for Mills, Combination (Eikotter) Nov. 46
Dyestuff Application, Rapid Reversal — A Technique for Increasing Quality of (Clifford) Mar. 49

F

Fiber Reactive Dyes, Polychromatic Dyeing and (Stetson) Apr. 42
Finishing Equipment, Buying New .. Apr. 40
Flame Retardancy, Imparting, to Cotton Knits (Morona, et al.) Jan. 29
Flame Retardant Finishes, Cotton Research Conference Improved Aug. 46
Fire Retardant Formulations, Chemicals for Feb. 42
Fire Retardant Finishes, Chemicals for Feb. 42
Flame Retardants Directory .. Jan. 36
Flammability Tests Fair to Wool, Are (Burgess) May 62
Formaldehyde, Removing (Vivatella) Sept. 46
Fungicide and Dye, One-Bath Zirchrome Chloride (Conner, et al.) June 62
Fusing Textiles, Copolymeric Nylon Powders for (Schaaf) Nov. 31

H

Hearing Conservation Program, Burlington Industries Conducts Aug. 38

I-M

Infant's Wear, How the Standard for Will Affect Producers and Retailers (Baker) ... Jan. 23
Irradiated Dyed Cotton, Effect of Pre-Treatments on Some Physical and Chemical Properties of, Part II (Kamel, et al.) Sept. 92
Knit and Woven Goods, Comparing Chemical Finishing of (Bille, et al.) Oct. 56

O-P

Odor Pollution in Carpet Processing, Curing (Singer) June 55
Open Width Knits, SHRink Control Process for Nov. 41
Panty Hose, Dyeing (Dreyb) .. Sept. 43
Pigment Migration, How Dominion Textile Stops Nov. 42
Pile Fabrics, Continuous Dyeing Range Introduced for Nov. 46
Pile Knits, Organic, From Mill to Consumer (Durham Hill) Feb. 21
Polyester Carpet, Continuous Dyeing of (Forrester, LeBlanc) June 29
Polyester Double Knits, How Syntax Finishes Apr. 32
Polyester Knits, Anti-Snag Finishes for (Helfgott) July 27
Polyester Knits, How to Prepare and Beam Dye Textured (Patterson) Mar. 52
Polyester Dyeing, Reducing Down-Time in (Latham, Sapers) July 31
Pre-Treatments on Some Physical and Chemical Properties of Irradiated Dyed Cotton, Part II, Effect of (Kamel, et al.) Sept. 92
Printing, Carpet Dyeing and (Meier-Windhorst) June 31
Printing Machinery Directory, ADR Feb. 17
Processing, Vacuum Impregnation — A Promising Technique Proved (Fox) Mar. 48
Resins in Cotton Fibers, Comparison of Application Techniques for Disposition of (Hamalainen, et al.) Feb. 38

S

Skin Dyeing, Overcoming the High Cost of (Leslie) Oct. 44
Sleepwear Standard, Flame Retardant Process Tops Dec. 52
Solvent, How to Process with (Sured) May 48
Solvent Scouring, Batch: Hot or Cold? (Lavallete) May 44
Stain Release Finish, Improved (Connick, Elley) Nov. 55

T-V

Textile Dyeing, Automatic Control of (Blakl) Nov. 25
Textile Finishes, Smoke Abatement for (Beltram) Nov. 25
Textured Polyester, How to Successfully Print (Eastman Chemical Prod. Lab. Staff) .. Oct. 70
Textured Polyester, Improving Atmospheric Dyeing of (Marsh) Oct. 30
Textured Yarns, Sizing (Moore) .. Aug. 41
THPC—Flame Retardant, Effect of pH on (Donaldson, et al.) Feb. 48
Trimer Deposits, Reducing (Petersen) Sept. 44
Washing, A Theory of, and its Applications (Prabhu, et al.) Aug. 53

W-Y

Waste, Treatment of Textile, with Activated Carbon (Porter) Aug. 24
Wastewater, Electrolytic Treatment of (Jones) Aug. 28
Wastewater, Filter Pretreatment of, Saves Money for Velvet Textile ... Aug. 31
Wastewater, Textile, Upgrading Treated (Rodman, Virgadamo) Aug. 31
Water Wastes, Treating Polluted Dye (Beck) Apr. 70
Wax Lubricants, Removing (Chandler) Sept. 41
Wool, Are Flammability Tests Fair to (Burgess) May 41
Wool, Flame Proofing of (Burgess) Mar. 42
Wool Knits, Finishing Washable (Freeman) Apr. 31

Z

Zirconchrome Process for Improved Fungicidal Chrome Mineral Dyes, Alkali Salt-Free (Conner, et al.) Jul. 57

AUTHORS

Abrahams, D., Dye Migration ... Sept. 48
American Dyestuff Reporter (C February 1973
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>undrade, A., and Hambleton, D. A.</td>
<td>Automation of Bath Dyeing</td>
<td>Nov. 28</td>
</tr>
<tr>
<td>Headley, M. M.</td>
<td>Printing Tufted Carpets</td>
<td>June 40</td>
</tr>
<tr>
<td>Atei, C. E.</td>
<td>Treating Polluted Dye Water Wastes</td>
<td>Apr. 70</td>
</tr>
<tr>
<td>Leek, H. E.</td>
<td>Beating the Breaks</td>
<td>May 35</td>
</tr>
<tr>
<td>Dietz, M. R.</td>
<td>Smoke Abatement for Textile Finishers</td>
<td>Aug. 42</td>
</tr>
<tr>
<td>Terrie, R. J., et al.</td>
<td>Rates and Mechanisms of Reactions Between Cotton and N-Methylolated Compounds</td>
<td>Apr. 44</td>
</tr>
<tr>
<td>Hinkle, Z., et al.</td>
<td>Automatic Control of Textile Dyeing</td>
<td>Nov. 25</td>
</tr>
<tr>
<td>Burgess, B.</td>
<td>Are Flammability Tests Fair to Wool?</td>
<td>May 62</td>
</tr>
<tr>
<td>Burgess, B.</td>
<td>Flame Proofing of Wool</td>
<td>Feb. 40</td>
</tr>
<tr>
<td>Turkitt, B. H., and Heap, S. A.</td>
<td>Setting Cotton Fabrics</td>
<td>June 58</td>
</tr>
<tr>
<td>Connick, W. J. Jr., and S. E. Ellzey, Jr.</td>
<td>Improved Stain Release</td>
<td>Nov. 55</td>
</tr>
<tr>
<td>Conner, C. J., et al.</td>
<td>One-Bath Zirconium Chloride Fungicide and Dye</td>
<td>Apr. 62</td>
</tr>
<tr>
<td>Connick, W. J. Jr., and S. E. Ellzey, Jr.</td>
<td>Improved Stain Release</td>
<td>Nov. 55</td>
</tr>
<tr>
<td>Flanagan, W.</td>
<td>Print Textured Polyester</td>
<td>Oct. 70</td>
</tr>
<tr>
<td>Hinkle, W.</td>
<td>Combination Dyer-Extractor Cuts Costs for Mills</td>
<td>Nov. 46</td>
</tr>
<tr>
<td>Elzey, S. E., Jr., and Connick, W. J.</td>
<td>Improved Stain Release</td>
<td>Nov. 55</td>
</tr>
<tr>
<td>Forrester, R. C., and BeLancic, C.</td>
<td>Continuous Dyeing of Polyester Carpet</td>
<td>June 29</td>
</tr>
<tr>
<td>Fox, M.</td>
<td>Vacuum Impregnation — A Promising Technique for Improved Processing</td>
<td>Mar. 48</td>
</tr>
<tr>
<td>Freeman, R. C.</td>
<td>Finishing Washable Wool Knits</td>
<td>Apr. 31</td>
</tr>
<tr>
<td>Garrison, A. W., and Hill, D. W.</td>
<td>Organic Pollutants from Mill</td>
<td>Feb. 31</td>
</tr>
<tr>
<td>Gottlieb, E.</td>
<td>Multi-Color Nylon Dyeing</td>
<td>Sept. 46</td>
</tr>
<tr>
<td>Grant, A.</td>
<td>High Quality Knits</td>
<td>July 36</td>
</tr>
<tr>
<td>Hambleton, D. A., and Andrade, A.</td>
<td>Automation of Batch Dyeing</td>
<td>Nov. 28</td>
</tr>
<tr>
<td>Heap, S. A., and Burkitt, B. H.</td>
<td>Setting Cotton Fabrics</td>
<td>June 58</td>
</tr>
<tr>
<td>Hellgott, S.</td>
<td>Anti-Stain Finishes for Polyester Knits</td>
<td>July 57</td>
</tr>
<tr>
<td>Hill, D. W., and Garrison, A. W.</td>
<td>Organic Pollutants from Mill</td>
<td>Feb. 21</td>
</tr>
<tr>
<td>Hoffeld, W. L., and Pratt, H. T.</td>
<td>Moire — Troublemaker in Knits</td>
<td>Dec. 58</td>
</tr>
<tr>
<td>Horan, T. J.</td>
<td>Commission Processing of Knit Goods</td>
<td>Oct. 68</td>
</tr>
<tr>
<td>Jones, D. L.</td>
<td>Electrolytic Treatment of Wastewater</td>
<td>Aug. 28</td>
</tr>
<tr>
<td>Kaner, L.</td>
<td>Solving the Problems of Carpet Piece Dyeing</td>
<td>June 33</td>
</tr>
<tr>
<td>Kalininowski, S.</td>
<td>Solvent-Assisted Cloth Preparation</td>
<td>May 31</td>
</tr>
<tr>
<td>Kuechler, W. E.</td>
<td>Trends in Knit Goods Finishing</td>
<td>July 32</td>
</tr>
<tr>
<td>Latham, H., and Sapers, I.</td>
<td>Reducing Down-Time in Polyester Dyeing</td>
<td>July 31</td>
</tr>
<tr>
<td>Lavalette, E.</td>
<td>Batch Solvent Scouring; Hot or Cold?</td>
<td>May 44</td>
</tr>
<tr>
<td>Mount Hope® designs maintenance-free wet service expanders</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two permanently greased seals in the newly designed MOUNT HOPE® Wet Service Expander maintain positive, constant pressure against a special race, preventing entry of air, dust, or moisture. Seals are non-rotating to eliminate centrifugal distortions. Other long-life features: Expander never needs re-lubrication during service life; chemical resistant end cap; stainless steel protective plate for internal parts; high speed, free-turning, pre-lubricated ball bearings. Degree of bow and cover compound customized to your requirements.

Write for Technical Data Bulletin. Mount Hope Machinery Company, 19 Fifth Street, Taunton, Massachusetts 02780.
within limits of 0.75-1 in. versus trade acceptable quality of 1.25 in.

An important feature of the plant is the use of Maier large rolls (2,500 lb of fabric previously slit by a Maier slitter), specially designed to handle knits. Each roll has enough fabric to run for two hours which, coupled with continuous processing, markedly decreases both the possibility of soiling and the amount of second-hand.

The Bruckner tenter frames are now made in the U.S. with as many U.S.-made components as feasible in order to facilitate servicing of the equipment.

The tenter frames at Ottex have wire-mesh support screens for the fabric to ride on. This feature is designed to give tensionless handling for the knits and permits heavy overfeed while preventing the sagging normally expected from knits, especially when they are being steamened.

Currently, each week the Ottex finishing department is handling 80,000 lb of self-produced and 60,000 lb of outside-produced double knit fabrics. Every yard of fabric is fully inspected and manual handling is kept to the minimum in order to achieve the high quality desired.

(4.) Bruckner tenter with intensive steaming, bulking, and decatizing, replaces the “Tenterette.” Beneath the transporting wire mesh, which runs synchronized with tenter chain, is a series of steamers and alternating heating coils. Overfeed of up to 40% plus quantity use of low pressure, wet steam causes fabric to bulk and shrink giving a decatizing effect which provides the hand desired for many wool or acrylics and blends. The wire mesh permits the shrinking and bulking without the sagging experienced in other tenter frames. U.S.-made components of the tenter include Honeywell temperature controllers, Maxon gas burners, Reliance DC drives and motors, Cutler and Hammer starters on AC panels, Burlin high limit safety switches, and PCI-Minneapolis flame control systems. There is one burner/temperature controller and hot air circulation fan every five feet compared with the usual one unit per 20 ft.

(5.) Still for distillation and recovery of perchlorethylene for re-use in the Solvanit® Oil, wax and dirt removed from fabric by perchlorethylene is separated in still bottoms and removal as sludge to waste.