Softeners Bulletin

An eight-page product information bulletin on Ucarsil MagnaSoft textile softeners has been issued by the Specialty Chemicals Division of Union Carbide Corporation. The new textile softeners are described by the bulletin as low viscosity aminofunctional siloxanes optimized to impart exceptional softness while minimizing fabric yellowing. Available as a 100% active fluid or as a 40 percent nonionic emulsion, these textile softeners reportedly have been found to be remarkably effective for 100 percent cotton, polyester/cotton blends and 100 percent synthetic made by either the ring-spun process or the open-end method.

The bulletin discusses features and benefits of Ucarsil MagnaSoft textile softeners and lists typical properties. Comparisons of performance are shown for the new textile softeners versus competitive products on 65/35 polyester/cotton broadcloth, 100 percent cotton printcloth, 83/17 cotton/polyester conduit, 50/50 polyester/cotton single tubular knit and 100 percent heat set polyester.

Storage and handling information and shipping data are also given. In addition, model formulations and techniques for emulsifications are presented in a two-page addendum.

Circle 60 on Reader Service Card

ADR EDITORIAL INDEX

Volume 74 (1985)

Entries to the right of title indicate month of issue and page number where story begins.

E. ElGenady May/34
Dyeing Wool Carpets And Blends (K. Zesiger) Jun./24
Low Temperature Dyeing Of Wool By Amine Or Ammonia Pretreatments (H. Hanna, L. Abdou, E. El-Khatib, S. Abdel-Fattah) Jul./42
Exhaust Application Of Fiber Reactive Dyes To Cotton And Polyester/Cotton Blends (W. Dausch) Sept./22
Dyeing Copolymer Polyester/Cotton Knits—Part I (M. Herlant) Sept./55
Determining Indigo And Sulfur Dye Contributions To Denim Shade Depths (J. Etters, M. Hurwitz) Oct./20
Improving Applications Of Fiber Reactive Dyes In Exhaust Dyeing (A. DeMaria) Oct./22
Dyeing Copolymer Polyester/Cotton Knits—Part II (M. Herlant) Oct./37
Reactive Dye - Acrylic Thickener Interactions (P. Bajai, R. Chavan, M. Manjeet) Nov./37

Influence Of Dyeing Techniques On The Performance Of Reactive Dyed Cotton Fabrics (J. Varghese, S. Patel) Dec./43

Energy Conservation
Converting To Closed Steam Heating Systems (S. McDonald) Jan./29
Energy Consumption Patterns In The Textile Industry: Part II—Wet Processing Energy Usage (D. Balmforth) Aug./13
Using Differential Pressure Controller For Energy Savings And Speed Increases In Ovens And Dryers (Rosner Asso.) Sept./17

Equipment
Using Differential Pressure Controller For Energy Savings And Speed Increases In Ovens And Dryers (Rosner Asso.) Sept./17
How Pump Assembly Improves Dyeing (K. Ballard, R. Craig) Sept./26
Improving Foam Application Techniques Using Varniopress And Magnetojet Systems (R. Zimmer) Sept./40

Exhibitions
ATME-I-85 Textile Machinery Show (ADR Staff) Apr./17
ATME-I-85 Spring-Review of Exhibitors' Offerings—Part I (ADR Staff) Jul./15
ATME-I-85 Spring-Review Of Exhibitors' Offerings—Part II (ADR Staff) Aug./27

Fiber Technology
Synthetic Fibers—An Uncertain Future? (C. Caldo) Mar./16
Process For Improving Comfort And Aesthetic Properties Of Polyester (R.M. Mittal, V.R. Bhatt) Jun./26

Finishing
Foam For Fabric Preparation:

Tabulated information on various Rhoplex® acrylic emulsions is grouped according to curing and cross-linking properties. Typical film properties associated with these emulsions include their excellent adhesion to many substrates; resistance to discoloration by heat or light; ease of handling, and ease of formulating and cleanup. Data also includes: percent solids, density, pH, stiffness, hand, cleanability and typical applications.

Circle 60 on Reader Service Card

FR Brochure

White Chemical Corporation has announced the availability of a new brochure that describes the flame retardant compounds, the company offers, including the Caliban® Flame Retardant System.

Circle 62 on Reader Service Card
Desizing, Bleaching, Scouring, Mercerizing Of Cottons And Blends
(C.G. Namboodri) Apr./52

Determining Optimum Wet Pickup In Low Add-On Finishing
(B. Smith) May/13

How To Use Formaldehyde In DP Finishing
(J. Turner) May/30

Magnesium Nitrate A Mild Cure Catalyst For DP Fabrics
(W. Reeves, A. Cory, K. Phillips) Jun./37

Advantages Of Partially Hydrolyzed PVA For Sizing And Desizing
(M. Geary) Sept./28

Novel Method For Desizing, Scouring And Bleaching Polyester/Cotton Blends
(G. Gawish, M. Bourgeois, G. Ambroise) Nov./35

Flame Retardants
THPS - Ammonia Precondensate FR For Poly/Cot Blends
(R.B. LeBlanc, D.A. LeBlanc) Jan./36

Foam Technology
Applying Silicones By Foam Finishing Technology
(A. Sabia) May/18

Recent Advances In Foam Printing Of Carpet Tiles
(A.D. Staff) Jun./16

Improving Foam Application Techniques Using Varioypress And Magneto Systems
(R. Zimmer) Sept./40

Froth And Foam Coating For Woven And Nonwoven Fabrics
(G. Kantner) Oct./26

Foam Printing —A Commercial Reality?
(J. Lynn) Dec./33

Dyeing Properties of Poly Acrylonitrile Polycaproactam Graft Polymers: Part II — Heat Transfer Printing
(M. El-Shahed, S. Shalaby, E. El-AIfy, M. El-Kashouti) Dec./40

Quality Controls
The Case For Quality Control (A.D. Staff) Oct./14

Soil Removal
Chemical Factors Affecting Soiling and Soil Release From Cotton-Containing DP Fabrics — Part XXIV: Copolymerization Of PET/Cot Blend With Vinyl Monomer Mixture
(A. Hebeish, N. Abou-Zeid, A. Waly, E. EIAlfy, M. Abou-Shousha) Apr./58

Vacuum Technology
Effective Lint Removal With Vacuum
(J. Green) Sept./24

Wastewater Treatment
Using Ozone To Decolorize Dyeing Plant Wastewater
(J. Green, S. Sokol) Apr./50

How To Prepare To Remove Wastewater Color
(J. Green) Sept./24

Plant Profiles
Globe Dye Works: 120 Years As A Commission Dyer
(A.D. Staff) Sept./36

Printing
New Developments In Synthetic Thickeners For Printing
(A. Seddon) Feb./13

Transfer Printing Of Acetylated Viscose And Polyester/Viscose
(S. Shakra, M.A. El Kashouti, S. Aggour, A. El Halwagi) Feb./22

Transfer Printing Of Acetylated Viscose And Polyester/Viscose
(S. Shakra, M. El Kashouti, S. Aggour) Mar./49

Flame Retardant Finish...
(Continued from page 32)

Flame Retardant Finish...

A stable, water-soluble liquid condensation product of methylol dicyandiamide and phosphoric acid can be used as durable flame retardant treatment for fabrics for tents and tarpaulins. To prevent the product from forming a white, gummy precipitate (hydrophobing) when dilution is made for pad baths, a small quantity of phosphoric acid must initially be mixed with the product. Since very little heat is produced during this operation, there is no need to use ice to cool the bath. Fabrics can be treated from a single bath by a conventional pad-dry-cure procedure to attain flame resistance, water repel lency, and rot-resis­tance. Strength retention of treated fabrics is in excess of 75%.

Conclusion
A stable, water-soluble liquid condensation product of methylol dicyandiamide and phosphoric acid can be used as durable flame retardant treatment for fabrics for tents and tarpaulins. To prevent the product from forming a white, gummy precipitate (hydrophobing) when dilution is made for pad baths, a small quantity of phosphoric acid must initially be mixed with the product. Since very little heat is produced during this operation, there is no need to use ice to cool the bath. Fabrics can be treated from a single bath by a conventional pad-dry-cure procedure to attain flame resistance, water repellency, and rot-resis­tance. Strength retention of treated fabrics is in excess of 75%.

References

(1) Pyroset® DO Fire Retardant, Textile Finishing Bulletin No. 130, American Cyanamid Co.

(2) Burnell, M.R. and Lynn, J.E., U.S. 2,582,961, assigned to American Cyanamid Co.
