Fire Retardant Coatings
Intumescence

Reggie Didier
GTI Chemical Solutions, Inc.

Fire Retardant Coatings
and Intumescence

- Flame retardants
 - Industries
- Intumescent
 - Development
 - Usage
 - Sources
 - Properties
 - Advantages
 - Continuous Improvement
Flame Retardants

- Flame retardants
 - Key Components
 - Impact(s)

- Chemicals and Properties
 - Effectiveness

Flame Retardant Major Areas

- Transportation
- Furnishings
- Building and Construction Material
- Electronics and Electrical Devices
Transportation

- Airplanes
- Trains
- Automobiles

Furnishings

- Carpet
- Foam
- Curtains
Building and Construction Material

- Electrical Wire and Cables
- Insulation
- Roofing

Electronics and Electrical Devices

- Computers
- Laptops
- Refrigerators
- Small Household Appliances
Development of Intumescence Coatings, Water-Solvent Base

- Solvent-Based Intumescence
 - Introduced - late 1970’s, replacing the more common form of Fire Protection (Concrete)
- Water-Based Intumescence
 - Commercially Introduced in the 1990’s

Intumescence in General

- Expand
- Absorbs Heat
- Environmental Influences
- Compartmentalize Fire
- Physical Activity
 - (swelling)
- Chemical Activity
 - (loss of bound water and char formation)
Fire Retardant Thin Film Coatings

- Conventional Intumescent Material
 - Binder or Resin Source
 - Phosphorus Source
 - Ammonium Polyphosphate (APP)
 - Carbon Source
 - Pentaerythritol (C5H12O4)
 - Gas Source
 - Melamine (C3H6N6)

Fire Retardant - Development of Water and Solvent Based

Water
- Acid Donor
- Binder
- Blowing Agent
- Carbon Source
- Other
 - Pigment, Dispersing
 - Preservatives
 - Plasticizers, Modifier

Solvent
- Acid Donor
- Binder
- Blowing Agent
- Carbon Source
- Other
 - Modifier, Solvent
 - Pigments
Formula Properties

- Performance Criteria
 - Raw Materials
 - Substrate
 - Compatibility
 - Cost

- Performance Criteria
 - Thermal Degradation
 - Stability
 - Interaction: Acid \rightarrow Phosphate \rightarrow Char
 \rightarrow Acid/H₂O/NH₄OH, Other: NH₄OH/CO₂

Formula Properties (Cont.)

- Performance Criteria (Cont.)
 - Intumescence Morphology
 - Images (SEM)
 - Thermal Insulation
 - Critical Temperature
 - Thickness Decreases
 - Other
 - Thermal Microscopy
 - Rheology
Binder Source

- Vinyl, Acrylic, Styrene-Acrylic
- Contribution(s):
 - Rheology
 - Char
- Thermal Stability
- Loading

Phosphorus Source

- Charring
 - Combustion Process
- Heat Source
 - Phosphoric Acid
 - Decomposition Process (Pyrolysis)
- Barrier
 - Between Material and Heat Source
Carbon Source

- Carbon Char Layer Insulates Resin
 - Pentaerythritol (Mono, Di or Tri)
 - Reduces Thermal Damage

- Duel Carbonific Review
 - Resin Combustion
 - Reduced due to Secondary Source

Gas Source / Blowing Agent

- Heat Decomposition
 - NH₄OH, CH₃N₃O, H₂O, CO₂

- Swell and Expand
 - Volume of the Char

- Thermal Char
 - Multi-Cellular

- Insulates
 - Substrate
Advantages of Intumescence Flame Retardant Coatings

- Combination flame retardants used with multi-fiber blends
- Polymer can be very soft to very firm
- Low Toxicity
 - Absence of Dioxin and Halogen Acids
 - Low Smoke
- Recycle-able
 - Nitrogen and Phosphorus

Application for Intumescence Flame Retardants

- Pad Solution
- Roller / Brush
- Spray (Airless)
- Coating (Drop or Foam)
On-Going Development Work to Improve Intumescence

- Reduced Physical Properties of Binder
 - Tensile Strength
 - Impact Strength
 - Elongation
- Loading Levels of the FR Additive
- Drip Retardants (Suppressants)
- Use of Additives
 - Fiber Glass
 - Polytetrafluoroethylene Powder

Flame Retardant Selection

- Performance of Product
 - Testing Specifications
- Fire Rating Standards
- Understand Testing
Question?