Features

32 You Light Up My Life: Hacking the Senses with Wearables
By Craig Crawford

Today’s e-textiles and wearables allow wearers to interact with technology in a more intimate way, appealing to all the senses. Although many e-textiles are deliberately flashy—just for the fun of it—they don’t have to be flashy to get their users’ attention. Wearables don’t just enhance users’ clothing, they also allow users’ technology to become part of their lives in the same intimate, skin-touching way their apparel is—making the technology both more useful and less invasive.

40 Trending Near You: Athleisure
By Glenna Musante

Yoga wear is not just for the yoga studio anymore! The new athleisure trend is everywhere. How will the needs of this new fashion trend affect the textile and apparel industry?

45 E-Textile Standards Surge Forward!
By J. Michael Quante

The e-textile explosion will have increasing impact on the textile industry. With the growth of this sector comes the challenges of developing new interactions between the textile and microelectronics industries to help define and shape new e-textile quality standards and test methods.

Technology

51 Validating Dynamic Testing of Fabric Crease Recovery with the Standard AATCC Test Method
By Lei Wang, Ruru Pan, Bugao Xu, Shuangge Jiang, Jianli Liu, and Weidong Gao

Crease or wrinkle recovery refers to the ability for a creased fabric to recover to its original shape over a certain period of time, and it is one of the essential performance parameters for assessing fabric usability. The parameter for evaluating the fabric crease recovery property is the wrinkle recovery angle (WRA) after the 5-min recovery period. Most testers require human interventions for transferring the folded specimen, which may disturb the initial recovery angle. A dynamic crease recovery tester developed at Jiangnan University can automatically measure WRA values in the whole process of recovery without manual intervention. This dynamic tester demonstrated advantages of higher accuracy and automation over manual testers. The objective of this paper was to validate the dynamic testing method of fabric crease recovery with the AATCC TM 66, using a variety of fabrics.